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Analyzing Lithium Structures in Batteries Using Iterative Residual U-Net and Operando XCT 

  

Daniela Ushizima1,2,3, Iryna Zenyuk1,4, Dula Parkinson1, and Pavel Shevchenko5 

 

1Applied Mathematics and Computational Research Division, Lawrence Berkeley National 
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2Berkeley Institute of Data Sciences, University of California, Berkeley, CA 94720 
3Bakar Institute, University of California, San Francisco, CA 94143 

4National Fuel Cell Research Center, University of California, Irvine, CA 92697 
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The study introduces batteryNET, a computational framework [1] based on an Iterative Residual 

U-Net architecture, designed for detecting lithium (Li) structures in operando datasets of 

lithium-metal batteries imaged at the synchrotron facilities such as the APS. A key challenge 

addressed is the low x-ray attenuation of Li metal combined with the large size of the data. This 

approach enables the monitoring of Li structure evolution within pouch cells using XCT by 

capturing changes in Li-related components with semantic segmentation and providing detailed 

visualizations of inactive Li. Additionally, the study quantifies the volume and effective 

thickness of electrodes, as well as the deposited and redeposited Li, uncovering new insights into 

the spatial relationships among these components. This deep learning framework offers valuable 

data for assessing battery performance, and a new way to compare current samples with future 

battery designs. Furthermore, the developed semantic segmentation technique demonstrates 

versatility, showing potential applicability to other datasets featuring filamentous structures 

[2,3]. 

 

This work was supported by AMLXD and CAMERA projects led by Lawrence Berkeley National 

Laboratory under contract number DE-AC02-05CH11231 with the U.S. Department of Energy, 

Office of Science, Office of Advanced Scientific Computing Research. This research used 

resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. 

Department of Energy Office of Science User Facility, located at Lawrence Berkeley National 

Laboratory. 

 

[1] Huang, Perlmutter, Su, Quenum, Shevchenko, Parkinson, Zenyuk, Ushizima, “Detecting 

lithium plating dynamics in a solid-state battery with operando x-ray computed tomography 

using machine learning”. Nature Computational Materials (2023). 

[2] Quenum, Zenyuk, Ushizima, “Lithium Metal Battery Quality Control via Transformer–CNN 

Segmentation.” Journal of Imaging (2023).  

[3] Ushizima, Sordo, Andeer, Sethian, Northen, “Rhizonet: Image Segmentation for Plant Root 

in Hydroponic Ecosystem,” bioRxiv 2023.11. 20.565580 (2023). 

 

 

 

 

 

 

 

 

 



Data-centric AI for Synchrotron Science: Enabled by FAIR, Pipelines, Graph Learning 

 

Roger H. French1, Alexander H. Bradley2, Balashanmuga Priyan Rajamohan2, Arafath Nihar2, 

Thomas G. Ciardi2, Weiqi Yu2, Redad Medhi1, Erika I. Barcelos1, Pawan K. Tripathi1, Frank 

Ernst1, and Matthew A. Willard1 

 
1Department of Materials Science and Engineering, Case Western Reserve University, 

Cleveland, OH 44106 
2Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 

44106 

 

APS-U presents new opportunities for deep learning from massive, multimodal synchrotron 

datasets. By leveraging existing datasets and datastreams, technologically informed “AI for 

Synchrotron Science” can be developed using a “data-centric AI'' approach, as opposed to the 

“model centric AI” of things such as Large Language Models. Data-centric AI, trained on 

Terabyte datasets, creates models which can naturally address complex materials science 

questions on performance, structure, properties, and reliability. But the large datasets and 

datastreams required for training present substantial challenges for scientists working on their 

notebook computers or even in traditional HPC clusters. These data-centric AI challenges can be 

addressed by integration of distributed computing with high performance computing as we do in 

CRADLE, combined with data FAIRification, and development of automated analysis pipelines 

that self-document the analysis by FAIRifiying the intermediate and final results. CRADLE Data 

Explorer, for example, enables real-time exploratory data analysis across petabytes of data, to 

inform scientific investigations. For image or movie datasets, a natural learning framework is 

convolutional neural networks. More complex problems often naturally fall into a spatiotemporal 

analysis framework, with deep learning by spatiotemporal graph neural network (st-GNN) 

models with metadata feature vectors. A st-GNN model trained on spatial and temporal data, will 

utilize the intrinsic spatial and temporal coherence of the problem. These deep learning neural 

network models therefore can encapsulate all the information from the experiments in an st-

graph and a knowledge graph (k-graph). This trained k/st-graph model serves as a data-driven 

Digital Twin of the problem it trained on. Data-centric k/st-graph deep learning AI enables new 

approaches to complex problems and massive datasets, while also providing concise insights into 

scientific findings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CRADLE Data Explorer: Advanced Visualization Platform for HEXRD and XCT Image 

Sequences and Deep Learning Analysis of HEXRD and XCT Image Sequences 
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Gabriel Ponon1, Matthew Willard1, Frank Ernst1, and Roger French1 
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The CRADLE Data Explorer is a cutting-edge visualization platform built on an integrated 

approach utilizing distributed and high-performance computing, for visualizing High-Energy X-

ray Diffraction (HEXRD) and X-ray Computed Tomography (XCT) image sequences. It 

provides users with immersive 3D views of HEXRD and XCT data, enabling exploration down 

to the pixel level. Leveraging advanced visualization techniques, researchers can navigate 

through intricate image sequences with unparalleled precision, gaining insights into the structural 

characteristics of materials under investigation. The integrated approach of the CRADLE Data 

Explorer ensures seamless interaction with distributed and high-performance computing 

resources. This enables researchers to handle large and complex datasets with ease, while 

maintaining optimal performance and scalability. Another aspect of CRADLE Data Explorer lies 

in its ability to detect and analyze subtle features within the data, including noise and other 

anomalies. By employing sophisticated algorithms and data processing techniques, researchers 

can identify and quantify these features, facilitating a deeper understanding of the underlying 

materials properties. 

 

Additionally, we demonstrate automated analysis pipelines based on deep learning techniques 

learning from 2D HEXRD image sequences, enabling the detection and characterization of phase 

transformations with remarkable accuracy and pitting corrosion from XCT image sequences 

paving the way towards in-situ analysis during data collection at synchrotron facilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



High-energy X-ray Diffraction and High-energy Diffraction Microscopy (HEDM) Data 

Analysis Tools 

 

Hemant Sharma1 

 
1Computational Sciences and Artificial Intelligence Group, X-ray Science Division, Argonne 

National Laboratory, Lemont, IL 60439 

 

I will cover a range of tools developed at the APS for analysis of high-energy x-ray diffraction 

data. These include automated setup calibration, fast azimuthal integration for powder 

diffraction, and algorithms for the reconstruction of high-energy diffraction microscopy (HEDM) 

data. The talk will also include a brief demo of the various capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Machine Learning for Faster Microstructure Analysis 

 

Reeju Pokharel 

 
1Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, 

NM 87544 

 

Multimodal scattering data holds valuable insights into material microstructure and properties, 

yet analyzing it requires extensive expert user interventions. We apply tailored machine learning 

(ML) methods to accelerate microstructure analysis from diffraction data. Here we present proof-

of-concept results to rapidly determine orientations, enhance information extraction from noisy 

measurements, and enable real-time simulations and reconstructions. Overall, the current ML 

methods demonstrate orders of magnitude speed-ups in analysis. The overarching goal is to 

combine these methods to guide experiments in real-time by providing instant microstructural 

feedback. This will maximize scientific insights extractable from experiments within limited 

beamtime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Streamlining Data Analysis for Synchrotron Datastreams Using Globus Platform Services 

 

Rafael Vescovi1 

 
1Argonne National Laboratory, Lemont, IL 60439 

 

The intersection of advanced computing technologies and the increasing data volumes from 

scientific instruments poses both challenges and opportunities. Advanced detectors employed by 

modern experimental facilities routinely collect data at multiple GB/s, necessitating online 

analysis methods to enable the collection of interesting subsets of such massive data streams. 

New methods are required for configuring and running distributed computing pipelines—what 

we call flows—that link instruments, computers (e.g., for analysis, simulation, AI model 

training), edge computing (e.g., for analysis), data stores, metadata catalogs, and high-speed 

networks. This talk will describe how Globus platform services, particularly Globus Flows and 

Compute, can be used to streamline the analysis of data generated by scientific instruments 

through the integration with High-Performance Computing (HPC) resources. I will demonstrate 

how Flows can be used to construct a secure analysis pipeline to automate and outsource the 

management, analysis, and publication of APS data. I will explain how such flows can be 

deployed, monitored, and managed at both the APS and ALCF and demonstrate their application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Early Work on Powder Diffraction Data Collection/Reduction Pipelines and Recent Work on 

Data Analysis Tools 

 

Brian Toby1 

 
1Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 

 

In the mid-2000s, beamline 11-BM was initially deployed for mail-in high-resolution powder 

diffraction, at a time when mail-in access to user facilities was nearly unknown. To manage this, 

I developed a proposal-to-disposal sample management system that included a data collection 

pipeline. The pipeline provided data post-processing and also automated instrument calibration. 

Most instrument operation, including alignment, was also automated. This work will be 

reviewed. Since that time, much of my effort, combined with that of Robert Von Dreele, has 

been to establish GSAS-II, a general-purpose diffraction data analysis package, for all types of 

diffraction measurements, including single-crystal, powder diffraction, pink-beam, small-angle, 

and reflectometry from high-resolution, imaging, and lab x-ray sources, as well as TOF and CW 

neutron sources. This includes Rietveld analysis, as well as image detector calibration, masking, 

and integration. While GSAS-II was initially designed as a GUI-based tool, it also has Python 

API. The API, along with the platform independence offered by Python, has allowed GSAS-II to 

become the tool of choice for projects wishing to embed diffraction data reduction, simulations, 

or fitting into a pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Streamlining Engineering Diffraction Analysis Using the MAUD Interface Language 

Kit (MILK) 

 

Dan Savage1 

 
1Los Alamos National Laboratory, Los Alamos, NM 87545  

 

Diffraction experiments often result in tens to thousands of patterns from which information can 

be extracted ranging from microstructure to equation of state. The extraction happens by fitting 

models of the diffraction process which describe the instrument (e.g., sample-to-detector 

distances and angles), the sample’s crystal structure (e.g., crystallographic space group and 

lattice parameters), and the microstructure (e.g., phase fractions and texture). Finding the set of 

parameters that best describes a measurement is hard to do in a robust way without expert 

intervention and in a way that leverages parallel resources (critical for real-time analysis). 

Benchmark examples of the open-source Python scripting framework for MAUD Rietveld 

software (MILK) will be presented with the Python Rietveld optimization and uncertainty 

quantification package (Spotlight) which together enable the scalable Rietveld optimization 

strategy and advanced analysis workflows (e.g., sampling uncertainty in key parameters). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Edge to Exascale Workflows to Support Massive-scale Data Analytics at LCLS 

 

Jana B. Thayer1 

 
1SLAC National Accelerator Laboratory, Menlo Park, CA 94025 

 

The LCLS-II Data System architecture addresses the challenges in data acquisition, data 

processing, data management, and workflow orchestration posed by the increase in data rate, 

volume, and complexity generated by the Linac Coherent Light Source upgrade. However, the 

exponential increase in the scale and speed of the data is prohibitive to traditional data analysis 

workflows, which rely on scientists painstakingly tuning parameters during live experiments to 

guide data collection and analysis. Instead, the automated delivery of actionable information 

about the experiment in real-time and near-real-time is needed to enable experiment steering and 

experiment design. Data processing and feature extraction at the edge are a strategic solution to 

producing actionable information that can feed sophisticated machine-assisted experiment 

steering feedback loops. Edge to exascale workflows spawn new requirements on metadata 

collection and provenance tracking. 


